Quantcast
Channel: Of Particular Significance » Hawking
Viewing all articles
Browse latest Browse all 4

Learning Lessons From Black Holes

$
0
0

My post about what Hawking is and isn’t saying about black holes got a lot of readers, but also some criticism for having come across as too harsh on what Hawking has and hasn’t done. Looking back, I think there’s some merit in the criticism, so let me try to address it and flesh out one of the important issues.

Before I do, let me mention that I’ve almost completed a brief introduction to the “black hole information paradox”; it should be posted within the next day, so stay tuned for that IT’S DONE!  It involves a very brief explanation of how, after having learned from Hawking’s 1974 work that black holes aren’t quite black (in that they slowly radiate particles), physicists are now considering whether black holes might even be less black than that (in that they might slowly leak what’s gone inside them, in scrambled form.)

Ok. One of the points I made on Thursday is that there’s a big difference between what Hawking has written in his latest paper and a something a physicist would call a theory, like the Theory of Special Relativity or Quantum Field Theory or String Theory. A theory may or may not apply to nature; it may  or may not be validated by experiments; but it’s not a theory without some precise equations. Hawking’s paper is two pages long and contains no equations. I made a big deal about this, because I was trying to make a more general point (having nothing to do with Hawking or his proposal) about what qualifies as a theory in physics, and what doesn’t. We have very high standards in this field, higher than the public sometimes realizes.

A reasonable person could (and some did) point out that given Hawking’s extreme physical disability, a short equation-less paper is not to be judged harshly, since typing is a royal pain if you can’t even move. I accept the criticism that I was insensitive to this way of reading my post… and indeed I thereby obscured the point I was trying to make.  I should have been more deliberate in my writing, and emphasized that there are many levels of discussions about science, ranging across cocktail party conversation, wild speculation over a beer, a serious scientific proposal, and a concrete scientific theory. The way I phrased things obscured the fact that Hawking’s proposal, though short of a theory, still represents serious science.

But independent of Hawking’s necessarily terse style, it remains the case that his scientific proposal, though based on certain points that are precise and clear, is quite vague on other points… and there are no equations to back them up.  Of course that doesn’t mean the proposal is wrong!  And a vague proposal can have real scientific merit, since it can propel research in the right direction. Other vague proposals (such as Einstein’s idea that “space and time must be curved”) have sometimes led, after months or years, to concrete theories (Einstein’s equations of “General Relativity”, his theory of gravity.) But many sensible-sounding vague proposals (such as “maybe the cosmological is zero because of an unknown symmetry”) lead nowhere, or even lead us astray. And the reason we should be so sensitive to this point is that the weakness of a vague proposal has already been dramatically demonstrated in this very context.

The recent flurry of activity concerning the fundamental quantum properties of black holes (which unfortunately, unlike their astrophysical properties, are not currently measurable) arose from the so-called firewall problem. And that problem emerged, in a 2012 paper by Almheri, Marolf, Polchinski and Sully (AMPS, for short), from an attempt to put concrete equations behind a twenty-year-old proposal called “complementarity”, due mainly to Susskind, Thoracius and Uglom; see also Stephens, ‘t Hooft and Whiting.

As a black hole forms and grows, and then evaporates, where is the information about how it formed?  And is that information lost, copied, or retained? (Only if it is retained, and not lost or copied, can standard quantum theory describe a black hole.) Complementarity is the notion that the answer depends on the point of view of the observer who’s asking the question. Observers who fall into the black hole think (and measure!) that the information is deep inside. Observers who remain outside the black hole think (and measure!) that the information remains just outside, and is eventually carried off by the Hawking radiation by which the black hole evaporates.  And both are right!  Neither sees the information lost or copied, and thus quantum theory survives.

For this apparently contradictory situation to be possible, there are certain requirements that must be true. Remarkably, a number of these have been shown to be true (at least in special circumstances)! But as of 2012, some others still had not been shown. In short, the proposal, though fairly well-grounded, remained a bit vague about some details.

And that vagueness was the Achilles heel that, after 20 years, brought it down.

The firewall problem pointed out by AMPS shows that complementarity doesn’t quite work. It doesn’t work because one of its vague points turns out to have an inherent and subtle self-contradiction. [Their argument is far too complex for this post, so (at best) I'll have to explain it another time, if I can think of a way to do so...]

By the way, if you look at the AMPS paper, you’ll see it too doesn’t contain many equations. But it contains more than zero… and they are pithy, crucial, and to the point. (Moreover, there are a lot more supporting equations than it first appears; these are relegated to the paper’s appendices, to keep the discussion from looking cluttered.)

So while I understand that Hawking isn’t going to write out long equations unless he’s working with collaborators (which he often does), even the simplest quantitative issues concerning his proposal are not yet discussed or worked out. For instance, what is (even roughly) the time scale over which information begins leaking out? How long does the apparent horizon last? It would be fine if Hawking, working this out in his head, stated the answers without proof, but we need to know the answers he has in mind if we’re to seriously judge the proposal. It’s very far from obvious that any proposal along the lines that Hawking is suggesting (and others that people with similar views have advanced) would actually solve the information paradox without creating other serious problems.

When regarding a puzzle so thorny and subtle as the black hole information paradox, which has resisted solution for forty years, physicists know they should not rely solely on words and logical reasoning, no matter how brilliant the person who originates them. Progress in this area of theoretical research has occurred, and consensus (even partial) has only emerged, when there was both a conceptual and a calculational advance. Hawking’s old papers on singularities (with Penrose) and on black hole evaporation are classic examples; so is the AMPS paper. If anyone, whether Hawking or someone else, can put equations behind Hawking’s proposal that there are no real event horizons and that information is redistributed via a process involving (non-quantum) chaos, then — great! — the proposal can be properly evaluated and its internal consistency can be checked. Until then, it’s far too early to say that Hawking’s proposal represents a scientific theory.


Filed under: Astronomy, Quantum Gravity, The Scientific Process Tagged: astronomy, black holes, Hawking, QuantumGravity

Viewing all articles
Browse latest Browse all 4

Latest Images

Trending Articles





Latest Images